The trace of a square matrix is the sum of the elements on its main diagonal. In other words, it is the sum of the elements a_11, a_22, a_33, ..., a_nn of the matrix A, where n is the size of the matrix.
The trace of a matrix is denoted by tr(A) or Tr(A). The trace of a matrix is a scalar quantity and is invariant under similarity transformations, meaning that if two matrices A and B are similar (i.e., B = P^-1AP for some invertible matrix P), then tr(A) = tr(B).
The trace of a matrix has several important properties, such as being linear, meaning that tr(A + B) = tr(A) + tr(B) and tr(kA) = k tr(A) for any scalar k, and being cyclical, meaning that tr(ABC) = tr(BCA) = tr(CAB) for square matrices A, B, and C of compatible sizes.
The trace of a matrix is commonly used in various areas of mathematics and physics, such as in calculations involving eigenvalues, determinants, and matrix norms.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page